Analisis Faktor Determinan Sosio-Ekonomi terhadap Rate Kasus HIV di Jawa Barat Menggunakan Regresi Binomial Negatif
DOI:
https://doi.org/10.71417/galen.v2i1.150Keywords:
Determinan Sosio-Ekonomi, HIV/AIDS, Regresi Binomial NegatifAbstract
Provinsi Jawa Barat menghadapi tantangan sebagai provinsi dengan kasus HIV tertinggi di Indonesia di mana data kasusnya berbentuk data hitungan yang terbukti mengalami overdispersi kuat (Dispersion Ratio = 50.804). Penelitian ini bertujuan memodelkan rate kasus HIV di 27 kabupaten/kota (2024) untuk mengidentifikasi faktor sosio-ekonomi yang berpengaruh dan secara lugas membandingkan efektivitas model non-spasial (Global NBR) dengan model spasial lokal (GWPR). Dengan menggunakan variabel respon jumlah kasus HIV (dengan offset populasi) dan 5 variabel penjelas (termasuk pengangguran, nakes, & PUS), metodologi Regresi Binomial Negatif (NBR) dipilih secara definitif di atas Poisson untuk mengatasi overdispersi. Temuan utama penelitian menunjukkan bahwa Model Global NBR (AIC=345.76) secara signifikan lebih baik dan lebih parsimonious (hemat) dibandingkan Model Spasial GWPR (AIC=594.57). Kemenangan model global ini didukung oleh Uji Moran's I pada sisaannya yang membuktikan tidak ada autokorelasi spasial tersisa Model terbaik ini mengidentifikasi tingkat pengangguran terbuka sebagai faktor risiko, sementara jumlah tenaga kesehatan (positif) dan jumlah PUS (negatif) teridentifikasi sebagai anomali statistik signifikan yang mengindikasikan adanya Ecological Fallacy dan bias surveilans pelaporan.
Downloads
References
Ahmad, M., Ali, A., & Ahmad, R. W. (2025). Dialogue Social Science Review ( Dssr ) A Comparative Evaluation Of Poisson , Negative Binomial , And Zero-Inflated Models For Count Data Dialogue Social Science Review ( Dssr ). 3(8), 188–198.
Berek, J. F. S., & Guntur, R. D. (2025). Pemodelan Generalized Poisson Regression (Gpr) Terhadap Jumlah Kasus Penyakit Tuberculosis Di Provinsi Nusa Tenggara Timur. Jurnal Sains Matematika Dan Statistika, 11(1), 127. Https://Doi.Org/10.24014/Jsms.V11i1.30743
Birri Makota, R., & Musenge, E. (2023). Spatial Heterogeneity In Relationship Between District Patterns Of Hiv Incidence And Covariates In Zimbabwe: A Multi-Scale Geographically Weighted Regression Analysis. Geospatial Health, 18(2). Https://Doi.Org/10.4081/Gh.2023.1207
Dalimunthe, R. A., & Husein, I. (2025). Zero Inflated Negative Binomial Regression In Malaria Cases In North Sumatera. Jistech (Journal Of Islamic Science And Technology) Jistech, 10(1), 107–115. Http://Jurnal.Uinsu.Ac.Id/Index.Php/Jistech
Djuraidah, A., Anisa, R., Ristiyanti Tarida, A., Alwi Aliu, M., Septemberini, C., Putri Astrini, Y. P. A., & Tasya Meilania, G. (2023). Pemodelan Mixed Geographically Weighted Regression-Spatial Autoregressive (Mgwr-Sar) Pada Kasus Hiv Di Indonesia. Jurnal Aplikasi Statistika & Komputasi Statistik, 15(2), 65–76. Https://Doi.Org/10.34123/Jurnalasks.V15i2.608
Fitriyah, N. I., Arum, P. R., & Wasono, R. (2024). Pemodelan Hiv Dan Aids Di Provinsi Jawa Timur Menggunakan Metode Regresi Bivariat Poisson Invers Gaussian (Bpig). Prosiding Seminar Nasional Unimus, 7, 226–235.
Fundisi, E., Dlamini, S., Mokhele, T., Weir-Smith, G., & Motolwana, E. (2023). Exploring Determinants Of Hiv/Aids Self-Testing Uptake In South Africa Using Generalised Linear Poisson And Geographically Weighted Poisson Regression. Healthcare (Switzerland), 11(6). Https://Doi.Org/10.3390/Healthcare11060881
Gedefie, A., Muche, A., Mohammed, A., Ayres, A., Melak, D., Abeje, E. T., Bayou, F. D., Belege Getaneh, F., Asmare, L., & Endawkie, A. (2024). Prevalence And Determinants Of Hiv Among Reproductive-Age Women (15–49 Years) In Africa From 2010 To 2019: A Multilevel Analysis Of Demographic And Health Survey Data. Frontiers In Public Health, 12(January), 1–11. Https://Doi.Org/10.3389/Fpubh.2024.1376235
Kiani, B., Mario Martin, B., Cadavid Restrepo, A., Mayfield, H. J., Skinner, E., Karina Maldonado Alcaíno, A., Nilles, E. J., Lau, C. L., & Sartorius, B. (2025). A Study Protocol For Developing A Spatial Vulnerability Index For Infectious Diseases Of Poverty In The Caribbean Region. Global Health Action, 18(1). Https://Doi.Org/10.1080/16549716.2025.2461867
Laybohr Kamara, I., Wang, L., Guo, Y., Huo, S., Guo, Y., Xu, C., Liao, Y., Liu, W. J., Ma, W., & Gao, G. F. (2022). Spatial–Temporal Heterogeneity And Determinants Of Hiv Prevalence In The Mano River Union Countries. Infectious Diseases Of Poverty, 11(1), 1–16. Https://Doi.Org/10.1186/S40249-022-01036-1
Manyangadze, T., Chimbari, M. J., & Mavhura, E. (2021). Spatial Heterogeneity Association Of Hiv Incidence With Socio-Economic Factors In Zimbabwe. Journal Of Geographical Research, 4(3), 51–60. Https://Doi.Org/10.30564/Jgr.V4i3.3466
Poisson, R. (2025). Pemodelan Kasus Baru Hiv Di Jawa Barat Menggunakan Poisson Inverse Gaussian Regression. 9(1), 114–128.
Rodrigues, T. B., Dias, B. R. L., Gomes, D., Arcêncio, R. A., Andrade, J. A. A., Ferreira, G. R. O. N., Gonçalves, L. H. T., & Botelho, E. P. (2023). Aids-Related Mortality In Paráprovince, Brazilian Amazon Region: Spatial And Temporal Analysis. Plos One, 18(1 January), 1–15. Https://Doi.Org/10.1371/Journal.Pone.0279483
Rosilala, A., & Hasanah, S. H. (2025). Comparison Of Negative Binomial Sar, Sem, And Sarma Methods In Modeling The Number Of Malnutrition Cases Among Toddlers In Central Java. Jurnal Gaussian, 14(1), 42–53. Https://Doi.Org/10.14710/J.Gauss.14.1.42-53
Simela, S. R., Kelepile, M., & Sebobi, T. I. (2025). Spatial Analysis And Associated Risk Factors Of Hiv Prevalence In Botswana: Insights From The 2021 Botswana Aids Impact Survey (Bais V). Bmc Infectious Diseases, 25(1). Https://Doi.Org/10.1186/S12879-025-10464-X
Solomon, M., Furuya-Kanamori, L., & Wangdi, K. (2021). Spatial Analysis Of Hiv Infection And Associated Risk Factors In Botswana. International Journal Of Environmental Research And Public Health, 18(7). Https://Doi.Org/10.3390/Ijerph18073424
Tsegaw, M., Mulat, B., Shitu, K., & Barrow, A. (2024). Comprehensive Hiv Knowledge And Associated Factors Among Reproductive-Age Women: Analysis Of The Gambia Demographic And Health Survey 2019/2020. Health Research Policy And Systems, 22(1), 1–9. Https://Doi.Org/10.1186/S12961-024-01128-4
Wu, Z., Fu, G., Wen, Q., Wang, Z., Shi, L. E., Qiu, B., & Wang, J. (2023). Spatiotemporally Comparative Analysis Of Hiv, Pulmonary Tuberculosis, Hiv-Pulmonary Tuberculosis Coinfection In Jiangsu Province, China. Infection And Drug Resistance, 16(June), 4039–4052. Https://Doi.Org/10.2147/Idr.S412870
Zhang, H., Sun, R., Wu, Z., Liu, Y., Chen, M., Huang, J., Lv, Y., Zhao, F., Zhang, Y., Li, M., Jiang, H., Zhan, Y., Xu, J., Xu, Y., Yuan, J., Zhao, Y., Shen, X., & Yang, C. (2024). Spatial Pattern Of Isoniazid-Resistant Tuberculosis And Its Associated Factors Among A Population With Migrants In China: A Retrospective Population-Based Study. Frontiers In Public Health, 12(March), 1–11. Https://Doi.Org/10.3389/Fpubh.2024.1372146
Ziaulhaq, M. H., & Affandi, A. (2024). Analisis Komprehensif Pengaruh Faktor Sosial Terhadap Jumlah Kematian Pasien Hiv: Analisis Regresi Poissson Dan Regresi Binomial Negatif. Equiva Journal, 2(2).
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibnu Ahmad Ambiya Al Assyad (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.












