Analisis Faktor Determinan Sosio-Ekonomi terhadap Rate Kasus HIV di Jawa Barat Menggunakan Regresi Binomial Negatif

Authors

  • Ibnu Ahmad Ambiya Al Assyad Universitas Pertahanan Author

DOI:

https://doi.org/10.71417/galen.v2i1.150

Keywords:

Determinan Sosio-Ekonomi, HIV/AIDS, Regresi Binomial Negatif

Abstract

Provinsi Jawa Barat menghadapi tantangan sebagai provinsi dengan kasus HIV tertinggi di Indonesia di mana data kasusnya berbentuk data hitungan  yang terbukti mengalami overdispersi kuat (Dispersion Ratio = 50.804). Penelitian ini bertujuan memodelkan rate kasus HIV di 27 kabupaten/kota (2024) untuk mengidentifikasi faktor sosio-ekonomi yang berpengaruh dan secara lugas membandingkan efektivitas model non-spasial (Global NBR) dengan model spasial lokal (GWPR). Dengan menggunakan variabel respon jumlah kasus HIV (dengan offset populasi) dan 5 variabel penjelas (termasuk pengangguran, nakes, & PUS), metodologi Regresi Binomial Negatif (NBR) dipilih secara definitif di atas Poisson untuk mengatasi overdispersi. Temuan utama penelitian menunjukkan bahwa Model Global NBR (AIC=345.76) secara signifikan lebih baik dan lebih parsimonious (hemat) dibandingkan Model Spasial GWPR (AIC=594.57). Kemenangan model global ini didukung oleh Uji Moran's I pada sisaannya yang membuktikan tidak ada autokorelasi spasial tersisa  Model terbaik ini mengidentifikasi tingkat pengangguran terbuka  sebagai faktor risiko, sementara jumlah tenaga kesehatan (positif) dan jumlah PUS (negatif) teridentifikasi sebagai anomali statistik signifikan yang mengindikasikan adanya Ecological Fallacy dan bias surveilans pelaporan.

Downloads

Download data is not yet available.

References

Ahmad, M., Ali, A., & Ahmad, R. W. (2025). Dialogue Social Science Review ( Dssr ) A Comparative Evaluation Of Poisson , Negative Binomial , And Zero-Inflated Models For Count Data Dialogue Social Science Review ( Dssr ). 3(8), 188–198.

Berek, J. F. S., & Guntur, R. D. (2025). Pemodelan Generalized Poisson Regression (Gpr) Terhadap Jumlah Kasus Penyakit Tuberculosis Di Provinsi Nusa Tenggara Timur. Jurnal Sains Matematika Dan Statistika, 11(1), 127. Https://Doi.Org/10.24014/Jsms.V11i1.30743

Birri Makota, R., & Musenge, E. (2023). Spatial Heterogeneity In Relationship Between District Patterns Of Hiv Incidence And Covariates In Zimbabwe: A Multi-Scale Geographically Weighted Regression Analysis. Geospatial Health, 18(2). Https://Doi.Org/10.4081/Gh.2023.1207

Dalimunthe, R. A., & Husein, I. (2025). Zero Inflated Negative Binomial Regression In Malaria Cases In North Sumatera. Jistech (Journal Of Islamic Science And Technology) Jistech, 10(1), 107–115. Http://Jurnal.Uinsu.Ac.Id/Index.Php/Jistech

Djuraidah, A., Anisa, R., Ristiyanti Tarida, A., Alwi Aliu, M., Septemberini, C., Putri Astrini, Y. P. A., & Tasya Meilania, G. (2023). Pemodelan Mixed Geographically Weighted Regression-Spatial Autoregressive (Mgwr-Sar) Pada Kasus Hiv Di Indonesia. Jurnal Aplikasi Statistika & Komputasi Statistik, 15(2), 65–76. Https://Doi.Org/10.34123/Jurnalasks.V15i2.608

Fitriyah, N. I., Arum, P. R., & Wasono, R. (2024). Pemodelan Hiv Dan Aids Di Provinsi Jawa Timur Menggunakan Metode Regresi Bivariat Poisson Invers Gaussian (Bpig). Prosiding Seminar Nasional Unimus, 7, 226–235.

Fundisi, E., Dlamini, S., Mokhele, T., Weir-Smith, G., & Motolwana, E. (2023). Exploring Determinants Of Hiv/Aids Self-Testing Uptake In South Africa Using Generalised Linear Poisson And Geographically Weighted Poisson Regression. Healthcare (Switzerland), 11(6). Https://Doi.Org/10.3390/Healthcare11060881

Gedefie, A., Muche, A., Mohammed, A., Ayres, A., Melak, D., Abeje, E. T., Bayou, F. D., Belege Getaneh, F., Asmare, L., & Endawkie, A. (2024). Prevalence And Determinants Of Hiv Among Reproductive-Age Women (15–49 Years) In Africa From 2010 To 2019: A Multilevel Analysis Of Demographic And Health Survey Data. Frontiers In Public Health, 12(January), 1–11. Https://Doi.Org/10.3389/Fpubh.2024.1376235

Kiani, B., Mario Martin, B., Cadavid Restrepo, A., Mayfield, H. J., Skinner, E., Karina Maldonado Alcaíno, A., Nilles, E. J., Lau, C. L., & Sartorius, B. (2025). A Study Protocol For Developing A Spatial Vulnerability Index For Infectious Diseases Of Poverty In The Caribbean Region. Global Health Action, 18(1). Https://Doi.Org/10.1080/16549716.2025.2461867

Laybohr Kamara, I., Wang, L., Guo, Y., Huo, S., Guo, Y., Xu, C., Liao, Y., Liu, W. J., Ma, W., & Gao, G. F. (2022). Spatial–Temporal Heterogeneity And Determinants Of Hiv Prevalence In The Mano River Union Countries. Infectious Diseases Of Poverty, 11(1), 1–16. Https://Doi.Org/10.1186/S40249-022-01036-1

Manyangadze, T., Chimbari, M. J., & Mavhura, E. (2021). Spatial Heterogeneity Association Of Hiv Incidence With Socio-Economic Factors In Zimbabwe. Journal Of Geographical Research, 4(3), 51–60. Https://Doi.Org/10.30564/Jgr.V4i3.3466

Poisson, R. (2025). Pemodelan Kasus Baru Hiv Di Jawa Barat Menggunakan Poisson Inverse Gaussian Regression. 9(1), 114–128.

Rodrigues, T. B., Dias, B. R. L., Gomes, D., Arcêncio, R. A., Andrade, J. A. A., Ferreira, G. R. O. N., Gonçalves, L. H. T., & Botelho, E. P. (2023). Aids-Related Mortality In Paráprovince, Brazilian Amazon Region: Spatial And Temporal Analysis. Plos One, 18(1 January), 1–15. Https://Doi.Org/10.1371/Journal.Pone.0279483

Rosilala, A., & Hasanah, S. H. (2025). Comparison Of Negative Binomial Sar, Sem, And Sarma Methods In Modeling The Number Of Malnutrition Cases Among Toddlers In Central Java. Jurnal Gaussian, 14(1), 42–53. Https://Doi.Org/10.14710/J.Gauss.14.1.42-53

Simela, S. R., Kelepile, M., & Sebobi, T. I. (2025). Spatial Analysis And Associated Risk Factors Of Hiv Prevalence In Botswana: Insights From The 2021 Botswana Aids Impact Survey (Bais V). Bmc Infectious Diseases, 25(1). Https://Doi.Org/10.1186/S12879-025-10464-X

Solomon, M., Furuya-Kanamori, L., & Wangdi, K. (2021). Spatial Analysis Of Hiv Infection And Associated Risk Factors In Botswana. International Journal Of Environmental Research And Public Health, 18(7). Https://Doi.Org/10.3390/Ijerph18073424

Tsegaw, M., Mulat, B., Shitu, K., & Barrow, A. (2024). Comprehensive Hiv Knowledge And Associated Factors Among Reproductive-Age Women: Analysis Of The Gambia Demographic And Health Survey 2019/2020. Health Research Policy And Systems, 22(1), 1–9. Https://Doi.Org/10.1186/S12961-024-01128-4

Wu, Z., Fu, G., Wen, Q., Wang, Z., Shi, L. E., Qiu, B., & Wang, J. (2023). Spatiotemporally Comparative Analysis Of Hiv, Pulmonary Tuberculosis, Hiv-Pulmonary Tuberculosis Coinfection In Jiangsu Province, China. Infection And Drug Resistance, 16(June), 4039–4052. Https://Doi.Org/10.2147/Idr.S412870

Zhang, H., Sun, R., Wu, Z., Liu, Y., Chen, M., Huang, J., Lv, Y., Zhao, F., Zhang, Y., Li, M., Jiang, H., Zhan, Y., Xu, J., Xu, Y., Yuan, J., Zhao, Y., Shen, X., & Yang, C. (2024). Spatial Pattern Of Isoniazid-Resistant Tuberculosis And Its Associated Factors Among A Population With Migrants In China: A Retrospective Population-Based Study. Frontiers In Public Health, 12(March), 1–11. Https://Doi.Org/10.3389/Fpubh.2024.1372146

Ziaulhaq, M. H., & Affandi, A. (2024). Analisis Komprehensif Pengaruh Faktor Sosial Terhadap Jumlah Kematian Pasien Hiv: Analisis Regresi Poissson Dan Regresi Binomial Negatif. Equiva Journal, 2(2).

Downloads

Published

2026-01-19

How to Cite

Analisis Faktor Determinan Sosio-Ekonomi terhadap Rate Kasus HIV di Jawa Barat Menggunakan Regresi Binomial Negatif. (2026). Galen: Jurnal Riset Ilmu Farmasi Dan Kesehatan, 2(1), 508-519. https://doi.org/10.71417/galen.v2i1.150